
Programming Views for Mobile Database Clients�

Susan Weissman Lauzac, Panos K. Chrysanthis

Department of Computer Science

University of Pittsburgh, Pittsburgh, PA 15260

Abstract

Within a database mobile environment, cached data
on mobile clients can take the form of materialized
views. In order to e�ciently maintain such material-
ized views while taking into consideration disconnected
operations, in this paper, we present the view holder,
a mechanism within the �xed network that maintains
versions of views. Further, we propose an extension to
SQL that enables the programming of the view holders
by the mobile clients based on their preferences and ca-
pabilities and discuss their implementation.

1 Introduction

Research in mobile computers and wireless networks
is allowing mobile clients to become an integrated part
of distributed computing environments along with their
stationary counterparts. Due to the communication
costs and frequent disconnections of wireless networks,
information stored within the mobile computer be-
comes crucial to maintaining productivity. The infor-
mation stored can take the form of materialized views
that operate in a fashion similar to data caches in dis-
tributed systems. Thus, the role of materialized views
and view maintenance as a caching scheme is becom-
ing increasingly important in the context of mobile
database applications [4].

Speci�cally, there is a need for a dynamic and cus-
tomizable view maintenance mechanism so that the
cache or view consistency achieved between the data
stored on the mobile host and the data sources match
the availability or cost of the network and the capabili-
ties of the mobile host. In this paper, we present such a
mechanism in the form of a proxy within the �xed net-
work that can assume di�erent roles in order to provide
a customizable client-oriented \data warehouse" mech-
anism which we will call the view holder [13].

In contrast to its warehouse counterpart, a view
holder is not as static or generic, and maintains a state

�This work is supported in part by the National Science Foun-

dation under grant IRI-95020091

with respect to the individual mobile clients it sup-
ports. When a view holder is required to maintain a
particular view, the view speci�cation can be seen as a
program speci�cation [11]. Further, a view holder can
be programmed to maintainmultiple versions of a view
in order to compensate for the data changes that oc-
cured to the materialized views that were used during
disconnection.

In the next section, by means of an example, we
motivate the need of view holders. Section 2 describes
the view holder within the context of the example, and
then presents how the view holder allows for e�cient
interactions with the data sources as well as the mo-
bile hosts. In Section 4, we extend the SQL create

view statement and show how it can be used to pro-
gram the view holders. In addition, we discuss their
implementation.

2 Motivating Example

For the sake of generality, suppose that the database
structure of our �xed network includes not only rela-
tional database servers responsible for storing base ta-
bles, but also a data warehouse which stores material-
ized views derived from these base table sources. It is
very important to understand that this data warehouse
holds static views that contain useful summary infor-
mation which must be maintained periodically by the
execution of amaintenance transaction. Queries from a
client or mobile host (MH) can be answered with ama-
terialized view, and throughout this paper a view will
be considered materialized once it is de�ned within the
�xed network. Let us assume that the data warehouse
is maintained by a versioning algorithm, such as "two
version no locking" [10], where one or more versions
may be available for the readers at any time. How-
ever, our data servers do not support any versioning
mechanism.

2.1 The Data Servers and Warehouse

Our data servers contain base tables regarding some
sporting goods stores (Table 1). The tables shown in-
clude Items, Stores and Sales, where Sales gives

Items

itemid iname line current price
2 12" racquet rqball $30
3 instr. video golf $40

Stores

sid sname city manager
11 Dunham's Pittsburgh Ms. Balon
12 Dunham's Erie Mr. Dill
13 MC Sport Pittsburgh Mr. Patrick

Sales

sid itemid quantity current price date
11 3 10 $40 2/5/98
12 2 20 $30 2/5/98
13 2 40 $30 2/6/98
12 2 20 $30 2/20/98
12 3 10 $40 2/20/98

Table 1. Tables from the Data Servers

individual item transaction information. Our data
warehouse, in this example, supplies summary infor-
mation from the base tables and contains several sepa-
rate versions of the data. One materialized view, called
TotalSales, periodically totals the sales by store and
item:

TotalSales(tVN,sid,sname,itemid,line,Tsales)

tVN keeps the version number of the maintenance
transaction that last updated this tuple, since the
data warehouse maintains multiple versions of the view
there will be multiple versions of each tuple. The at-
tributes sid, city and itemid are non-updatable at-
tributes that do not change, whereas Tsales must be
periodically updated by a maintenance transaction and
will have di�erent values among the versions. We will
assume that the tuples with the largest tVN numbers
belong to the most current version of the view. Table
2 shows a possible materialization for this view where
two versions are available.

The maintenance transaction that created version 3
of the view does not include the last two sales transac-
tions made by the store with sid 12 on 2/20/98. How-
ever, version 4 was created at a later time and includes
these last two sales transactions.

Now suppose that a mobile host (MH) starts an
application which will allow the user to see and per-
form some rough calculations regarding the racquetball
equipment sales. In order to inquire about equipment
sales made by stores in each city, the MH must request
information fromboth the data warehouse and the data
sources. So that each possible source is uniquely iden-
ti�ed within the RqballSales query, DW refers to the
data warehouse while DB refers to our source contain-
ing the base tables.

TotalSales

tVN sid sname itemid line Tsales
3 11 Dunham's 3 golf $400
3 12 Dunham's 2 rqball $600
3 13 MC Sport 2 rqball $1200

4 11 Dunham's 3 golf $400
4 12 Dunham's 2 rqball $1200
4 12 Dunham's 3 golf $400
4 13 MC Sport 2 rqball $1200

Table 2. Data Warehouse’s TotalSales View

Query: RqballSales
CREATE VIEW RqballSales AS

SELECT DW.sname, DW.itemid, DW.line,
DW.Tsales, DB.current price

FROM DW.TotalSales, DB.Items
WHERE (DW.line = \rqball") AND

(DW.TotalSales.itemid = DB.Items.itemid)

This global query will be sent to a query processor
within the �xed network which will decompose it into
component queries for both the data warehouse and the
database. We want this query to be processed within
the �xed network to save both the energy and resources
of the MH. The results will then be communicated to
the MH as a materialized view.

Suppose that when the MH requested this view it
was materialized with respect to version 3 of the data
warehouse's TotalSales view. The MH may keep its
materialization of RqballSales for some time and may
not receive the most current sales �gures (i.e., from
version 4) due to traveling or communication delays.
Eventually, another application such as a spreadsheet
and graphing tool could be started that would allow
the user to create slides for an upcoming presentation.
At this point, the most recent results may be available,
or communication conditions may have improved (e.g.,
the user is dialing up from their hotel room after work).
Within the new application, the most recent sales �g-
ures can be incorporated into the spreadsheet. Once
the MH receives the most recent version of the data,
the user will be running two application sessions and
accessing two separate versions of the view at the same
time. This is in contrast to a single reader session, in a
data warehousing environment, where each consecutive
query comes from the same version [10].

Another di�erence to consider is that, in a data
warehousing scenario, view maintenance is achieved by
forcing the client or MH to receive a new version of the
materialized view. However, such a view maintenance
strategy is not suitable and potentially very expensive
for a MH. We elaborate on this next.

2.2 Problems

The above example clearly illustrated the need to
support versions in order to cope with (partially) dis-
connected operations. Even if the sources support ver-
sions, directly accessing the data servers and data ware-
house poses a wide range of di�culties. Some of these
problems stem from the limited resources of the MH
and wireless networking conditions:

� In some versioning algorithms, once many main-
tenance transactions occur within the data ware-
house and the data is considered too old, the user
must end its current work and gather a new version
because the older one has expired [10]. However,
it is not always convenient or even possible for a
MH to receive a new version of the view.

� If the MH can not receive a new version then the
work done during a period of disconnection with
an expired version may have to be discarded.

� The MH may not have enough adequate storage
to hold several versions of a materialized view or
even one entire version.

Other problems stem from the static nature of the data
warehouse and data servers:

� To update the MH, the data warehouse will have
to send an entire new version of the view each time
since it can not compute the di�erence between
versions.

� Each time a MH's materialized view is to be up-
dated the data warehouse and the data sources
will have to be queried in order to reconstruct the
materialized view from scratch.

� The data warehouse and data sources will not cre-
ate or maintain a particular indexing structure, for
example, for the query RqballSales that can be
communicated to the MH.

� Each MH will be requesting information from the
data warehouse and sources. This creates a great
deal of tra�c within the �xed network, especially
if many MHs are requesting the same view query.

3 View Holders

To alleviate the problems discussed, without re-
quiring modi�cations to the existing databases and
data warehouses (i.e., unlike solutions presented in
[1]), we developed a versioning mechanism, called the
view holder, for maintaining the materialized views re-
quested by a mobile host.

Every application on a mobile host uses only a sub-
set of the data that exists in the data sources DS in-
cluding our data warehouse. We say the application
superset or superview SV contains all the information
that will be used by an application. The superview is
really just a materialized view de�ned as a query Q
applied to the data sources (SV = Q(DS)).

For a speci�c application environment, the MH can
request that a view holder maintains this superview
SV of the data that it could possibly need. Then the
MH can cache or hoard [6] a subset of this superview
SV before a period of disconnection or a weak connec-
tion. In the example given, the mobile machine may
not have the ability to store all the data regarding ev-
ery store that sells racquetball equipment in every city
from the query RqballSales. However, if the user is
traveling to Pittsburgh, only the data concerning stores
in this city will be downloaded to the mobile machine.
The request for the query RqballSales is what we call
the initiation message and forms the superview, while,
the request for all information concerning Pittsburgh
from the view holder is called the MH's cache mes-
sage. The view holder can keep track of the updates
performed to the query RqballSales, as well as, the
speci�c changes to the data from Pittsburgh. In other
words, the superview will be incrementally maintained
(SV 0 = SV +�), and only data from the � will need
to be communicated to the mobile host. In this way,
the view holder will be able to reduce the amount of
wireless communication required to update a MH when
it is possible.

MH

MH Query

MH

MH Query

Server
Data

Server
Data Data

Server

Data
Warehouse

MH

MH Query

View Holders

Data
Warehouse

Maintenance
Transaction

Network
Fixed

Figure 1. Overview of Architecture

As shown in Figure 1, we propose a layered system
architecture where the data servers and data warehouse
are more closely coupled within the �xed network than
the materialized views maintained by the view hold-

ers. The data server layer is responsible for periodically
constructing a maintenance transaction which updates
a data warehouse where the views are static and the
number of consecutive versions of each view also re-
mains static.

In contrast, a version in the view holder will never
expire, even if the data warehouse stops maintaining
it, since the view holder must maintain a version for as
long as a MH needs it. So, the view holder can be seen
as a bu�er, holding versions of a specialized view for
a particular MH. This is done in order to compensate
for the data changes that will occur to the material-
ized views being used during disconnection. Therefore,
space allocated for the updated attributes of a view
must be done dynamically since it is not known before-
hand howmany versions will be maintained. Many ver-
sions can be dynamicallymaintained without incurring
huge storage requirements because the views requested
by an MH are very likely to be a small and specialized
amount of the information from within the data servers
and/or data warehouses. View holders can be imple-
mented via a data structure called the tuple version list
(TVL). These TVLs and the algorithms that maintain
them and compute � are described in [13].

It is possible some of the data sources including data
warehouses may not support explicit versions of data.
In such a case, the view holder will create an implicit
\version" by querying the source in order to extract the
data at a given moment. Often, by querying the cata-
log of a data source, we can determine the last time a
tuple, attribute, or table was modi�ed and use this as
a timestamp to be stored along with the data. In addi-
tion, other structures, such as indices, can be built and
maintained by the view holder and later communicated
to the MH along with the materialization of the cache
message. The MH would then be able to reconstruct
an indices tree within its own memory.

3.1 View Holder Roles

Although we have concentrated on the view holder
prefetching and maintaining data used by the MH,
there are other possibilities to consider when deciding
the exact role the view holder plays within the �xed
network. Essentially, the view holder can support any
of these possible roles:

� Holder-as-Proxy: The view holder only stores
the latest version found in both the �xed network
and MH in order to compute the � view and build
any required indices.

� Holder-as-Bu�er: There is full replication of
the views currently being used on both the MH
and view holder. Whenever a MH exhausts its

resources while disconnected, it can now suspend
one or more of its active applications and reclaim
the space of the respective versions. Later, when
reconnected, these processes can �nish with the
view holder's copy of the data.

� Holder-as-Cache: The view holder maintains
a superview SV of the information required by
the MH's application sessions. The MH can then
hoard a subset of this data for use when discon-
nected.

In the �rst case, Holder-as-Proxy, the view holder's
state can be made small and possibly migrated as part
of the hand-o� between cells. In the case of Holder-
as-Bu�er, all the previous versions used by a MH are
maintained as well as the latest in order to provide data
replication, whereas in the third case, Holder-as-Cache,
an even larger superview that may be used by the MH
is prefetched and maintained. In the last case, the view
holder must provide more functionality including some
query processing and will most likely exist as a host
integrated within the �xed network.

4 The Programming of Views

An unmaterialized view can be seen as a program
speci�cation. Every time the view "program" is exe-
cuted, the view is re-materialized [11]. It is the view
holder's responsibility to monitor the sources and re-
materialize the data when changes have occurred, since
the MH does not have the resources to do this work.
The MH is only given the pure data that is not main-
tainable and does not contain derivation or mainte-
nance procedures. As a result, the view holder must
contain and execute a materialization program. How-
ever, this program does not have to be constructed
without any input from the MH. Any additional infor-
mation the MH can give the view holder regarding the
host's work (e.g., important data to monitor, planned
disconnections) can help customize and reduce the cost
of materialization.

Therefore, in addition to allowing the user to state,
within a select statement, the data it wishes to have
maintained by the view holder, we want the user to be
able to make very speci�c requests regarding how this
data is maintained and communicated. These MH's
preferences include: (1) what role the view holder will
play in its interactions with the MH and, hence, the
number of versions the view holder will have to main-
tain (2) which constraints determine how often view
maintenance occurs or is communicated, and (3) which
speci�c data changes are most important to the MH.

4.1 Mobile Host Preferences

Our goal is to extend SQL so that the create view
statement sent within the initiation message includes
the preferences of a MH with respect to issues (2) and
(3) above. For our example in Section 2.1, we showed
how a MH can request the services of a view holder
by describing the data required and specifying from
which sources the data should originate. Now we want
to include the criteria for materialization that will de-
scribe which data changes should invoke the update of
a MH. Towards this, we introduce the ON condition
that can specify which data should be monitored by
the view holder and how often. In our example, sup-
pose that the mobile user wanted its view (within the
view holder) to be updated only when there was a new
version available from the data warehouse. That is,
if the current price attribute is updated a new ver-
sion is not generated. Thus, the view holder only has
to monitor the data warehouse for the release of new
versions.

CREATE VIEW RqballSales AS
SELECT DW.sname, DW.itemid, DW.line,

DW.Tsales, DB.current price
FROM DW.TotalSales, DB.Items
WHERE DW.line = \rqball" AND

(DW.TotalSales.itemid = DB.Items.itemid)
UPDATE ON DW.new version

Besides the condition above which will update the view
whenever the data warehouse generates a new version,
this generic condition for determining materialization
could also include:

� updating upon changes to a speci�ed table or at-
tribute. (e.g., UPDATE ON DB.current price,
UPDATE ON DB.current price > $15)

� updating with changes to a speci�c data source.
(e.g., UPDATE ON DB)

� updating with given keywords such as
ALL TABLES, ALL SOURCES.

� updating after a given amount of time or after a
speci�ed number of versions have been released.
This helps when planning a disconnection.

� updating with any combination of sources, at-
tributes, and conditions. (e.g., UPDATE ON
DB.current price > $15 OR DW.new version)

4.2 Building a View Maintenance Mechanism

There is a point, in our example in Section 2.1,
where a maintenance transaction released version 4 of

the data warehouse's view TotalSales. Once this oc-
curred, the view holder was allowed to read this version
and prefetch it for later use by the MH. But how did
the view holder learn about the release of a new ver-
sion? In order to answer this question there are several
possible solutions to consider:

� Monitor Data: Make the view holder period-
ically monitor the data servers and data ware-
houses to known when updates or new versions
have been created.

� Monitor Catalog: Have the view holder query
the catalog and determine the last time a tuple,
attribute, or table was updated. After comparing
this with the timestamps of the data stored in the
TVLs, the view holder can determine if there has
been any changes.

� Trigger: Built a trigger within the data ware-
house and server so that the sources notify a view
holder when changes have occurred.

If the data server's constraint base can be manipulated,
then once the view holder receives a request from a
MH, a trigger can be constructed that will inform the
view holder of any changes to the relevant data. On
the other hand, if our data warehouses and servers are
stateless and can not keep track of who is interested
in their ongoing changes, then the triggering option
can not be utilized. In this case, the two monitoring
options still become valid possibilities that can be ini-
tiated by a view holder which creates a loop to monitor
the data sources by periodically checking for updates.
The choice is usually dependent on the type of permis-
sion or authorization granted by the data sources.

Figure 2 shows our options for view maintenance.
Essentially, the ON condition given by the MH can
be incorporated into a triggering or looping condition.
Sometimes there is a direct translation from the ON
condition to a condition for view maintenance. For ex-
ample, if the MH only wants to be updated when there
are changes to the attribute current price then this
condition can be directly incorporated into the trigger-
ing constraint. In the case of monitoring, a general tim-
ing condition could be used so that the attribute would
be checked periodically. However, if the user wanted its
materialization to be updated every 10 minutes inde-
pendent of the changes to current price, this type of
condition could be directly integrated into the moni-
toring loop condition. In both cases, once updates had
occurred, a select statement would be used to notify
the view holder.

View Request

Monitor

Loop Condition
Loop Action:

Trigger Condition

Create Trigger

Trigger Action:

Monitor Catalog Monitor Data

SELECT
FROM ...

SELECT
FROM ...

If updated
materialize view

Materialize View
SELECT
FROM ...

Figure 2. Programming View Maintenance

4.3 Implementation Issues

Our implementation approach for executing the
monitoring program at the data sources is to utilize
an Aglet. Aglets are mobile Internet agents in Java
[3] that can be dispatched from the view holder and
sent to a remote host for execution. If the aglets are
equipped with database capabilities they become mo-
bile database agents [8] that can connect to a remote
data server, execute the monitoring program, and fetch
any updates (see Figure 3). After receiving updates
from an issued aglet, it is the view holder's responsi-
bility to process the updates and present the MH with
speci�c view data changes.

Aglets carry along their program code, state, unique
identi�cation, and query trip plan as they move from
host to host. If there are any communication problems,
such as a host failure, the trip plan allows them to
try alternate hosts and solutions. Despite their multi-
ple functionalities, aglets are small lightweight objects
with a binary code of approximately 2 kilobytes. Once
the aglet arrives at the data server and passes any secu-
rity checks, it then attempts to connect to the database
by loading the appropriate Java Database Connectiv-
ity (JDBC) Driver. Once the aglet is connected to a
data server, it executes its monitoring of the database
or catalog. The results can be dispatched back to the
view holder while the aglet continues its monitoring
until released or redirected to another data source by
the view holder.

5 Conclusions

This paper addresses the problem of caching/
hoarding and maintaining data within a mobile envi-
ronment in the form of a materialized view. Our main
contribution is the development of the view holder,
a mechanism that maintains customizable versions of
cached views speci�ed by an extension of SQL. Cur-
rently, we are working on implementing view holders
using Java agents in conjunction with PRO-MOTION,

Aglet

Replicated
Data

Server

Server
Data

Aglet

Data

Holder

Warehouse

View

Figure 3. Monitoring Aglets

our mobile transaction infrastructure [12].

References

[1] J. Bailey, G. Dong, M. Mohania, X. Wang. E�cient
Incremental View Maintenance Using Tagging in Dis-
tributed Databases. TR 95-37, U. of Melbourne, 1995.

[2] L. S. Colby, A. Kawaguchi, D. F. Lieuwen, I. Mumick.
Supporting Multiple View Maintenance Polices. the

ACM SIGMOD Conf., pp. 405{416, 1997.
[3] Aglets Workbench. by IBM Japan Research Group.

Web site: http://aglets.trl.ibm.co.jp
[4] T. Imielinski, S. Viswanathan, B. R. Badrinath.

Querying in Highly Mobile Environments. the 18th

VLDB Conf., pp. 41{52, Aug. 1992.
[5] A. Kawaguchi, D. Lieuwen, D. Mumick, D. Quass,

K. A. Ross. Concurrency Control Theory for Deferred
Materialized Views. the 1997 ICDT, Jan. 1997.

[6] J. J. Kistler and M. Satyanarayanan. Disconnected
Operation in the Coda File System. ACM Trans. on

Computer Sys., 10(1):3{25, Feb. 1992.
[7] P. Krishna, N. H. Vaidya, D. K. Prodhan. Static and

Adaptive Location Management in Mobile Wireless
Networks. J. Computer Comm., 19(4), Mar. 1996.

[8] S. Papastavrou and G. Samaras. The Development of
DBMS Client/Server Applications on the Web using
Java Mobile Agents. TR 98-5, U. of Cyprus, 1998.

[9] A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao. Mod-
eling and Querying Mobile Objects. the 13th ICDE,
pp. 422{431, Apr. 1997.

[10] D. Quass and J. Widom. On-Line Warehouse View
Maintenance for Batch Updates. the ACM SIGMOD

Conf., pp. 147{158, May 1997.
[11] N. Roussopoulos. Materialized Views and Data Ware-

houses. SIGMOD record, 27(1):21{26, Mar. 1998.
[12] G. Walborn and P. Chrysanthis. Pro-motion: Man-

agement of Mobile Transactions. the 11th ACM SAC,
pp. 171{181, Mar. 1997.

[13] S. Weissman Lauzac and P. K. Chrysanthis. Utilizing
Versions of Views within a Mobile Environment. the

9th ICCI, Jun. 1998.
[14] J. E. Widom. Special Issue on Materialized Views and

Data Warehousing. IEEE DE Bulletin, 18(2), Jun.
1995.

[15] Y. Zhuge, H. Garcia-Molina, J. Hammer, J. Widom.
View Maintenance in a Warehousing Environment. the
ACM SIGMOD Conf., pp. 316{327, 1995.

